A temporal precedence based clustering method for gene expression microarray data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spectral clustering method for microarray data

This paper considers a clustering method motivated by a multivariate analysis of variance model and computationally based on eigenanalysis (thus the term “spectral” in the title). Our focus is on large problems, and we present the method in the context of clustering genes using microarray expression data. We provide an e5cient computational algorithm and discuss its properties and interpretatio...

متن کامل

Clustering Algorithms for Time Series Gene Expression in Microarray Data

illustrations, 75 numbered references. Clustering techniques are important for gene expression data analysis. However, efficient computational algorithms for clustering time-series data are still lacking. This work documents two improvements on an existing profile-based greedy algorithm for short time-series data; the first one is implementation of a scaling method on the pre-processing of the ...

متن کامل

Comparative Study of Clustering Techniques for Gene Expression Microarray Data

Scientists can now monitor on a genomic scale the patterns of gene expression under varying environmental conditions. With this rapidly growing wealth of information comes the need for organizing and analyzing the data. One natural approach is to group together genes with similar patterns of expression. Several approaches have suggested various alternatives for similarity metrics and clustering...

متن کامل

Memory-Efficient Clustering Algorithms for Microarray Gene Expression Data

1 Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan 2 Department of Informatics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan 3 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 6110011, Japan ...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Bioinformatics

سال: 2010

ISSN: 1471-2105

DOI: 10.1186/1471-2105-11-68